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Abstract

Herein a plane, steady-state fluid flow solution for fractured porous media is first presented. The solution is based on
the theory of complex potentials, the theory of Cauchy integrals, and of singular integral equations. Subsequently, a
numerical method is illustrated that may be used for the accurate estimation of the pore pressure and pore pressure
gradient fields due to specified hydraulic pressure or pore pressure gradient acting on the lips of one or multiple
non-intersecting curvilinear cracks in a homogeneous and isotropic porous medium. It is shown that the numerical inte-
gration algorithm of the singular integral equations is fast and converges rapidly. After the successful validation of the
numerical scheme several cases of multiple curvilinear cracks are illustrated.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a class of porous media problems for which the assumption of a single continuous porosity is
not realistic. For example we refer here to the case of rock masses that are transected by pre-existing dis-
continuities such as faults, joints or cracks. These media which exhibit a “local preference” for fluid flow are
called double porosity media or media with two (or more) degrees of porosity (Barenblatt et al., 1960; War-
ren and Root, 1963, among others).
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Pore fluids are believed to be involved in many dynamical processes related to seismic activity. These
include the faulting process itself as well as postseismic phenomena caused by stress changes which result
from seismic fault slip. Pore pressure build-up and release may play significant role in the seismic cycle and
particularly in the initiation of faulting. Hickman et al. (1994) and Evans and Wong (1992) cite many pa-
pers which discuss the role of pore fluids in faulting processes. A better understanding of the fractured
Earth’s crust as a fluid-saturated poroelastic material is necessary in order to understand the physics of
the entire earthquake cycle.

The study of fluid flow in fractured media has also many other significant practical applications such
as:

e Hydraulic fracturing in boreholes in petroleum or geothermal reservoirs in order to increase the perme-
ability of the formation.

e Pore pressure influence on fracture propagation in rocks and in situ stress measurements with the
hydraulic fracturing technique.

e Estimation of the permeability of fluid reservoirs (e.g. petroleum, water).

e Hydro-mechanical erosion of rocks around wellbores.

e Rock fracturing with thermal fatique since the solutions of thermal and fluid flow problems are
similar.

It is worth noticing here that in the first two classes of problems the pore pressure diffusion along the lips
of the crack(s) is usually ignored.

For the study of problems of pore pressure or heat diffusion (potential flow theory) in fractured media,
many different approaches can be used:

(1) Integral transform techniques such as Fourier, Mellin and Laplace transformations Sneddon (1951),
among others, that can be applied in a small class of problems even though they may be significantly
extended by the Wiener—Hopf technique (e.g. straight or semi-infinite cracks in the plane or in the half
plane).

(2) Finite element (FEM) and finite difference (FDM) methods that are also called domain
methods (Reddy, 1993, among many others) which have small accuracy along the crack boundaries.

(3) Boundary element methods (BEM) that require discretization only on the crack boundaries and
boundaries of the domain and are accurate on the boundaries provided that special crack tip elements
are employed (Brebbia and Dominguez, 1989; Banerjee and Butterfield, 1981; Brebbia et al., 1984;
Hartmann, 1989, among many others).

(4) Complex potentials in conjunction with the theories of Cauchy integrals and of singular integral equa-
tions, which require more elaborate formulation but they lead to elegant closed-form or semi-analyti-
cal solutions (Mikhlin, 1957; Parton and Morozov, 1978; Barzokas and Exadaktylos, 1995). This
method leads also to more accurate and time effective solutions compared to all the aforementioned
numerical techniques (i.e. FEM, FDM, BEM).

The approach, which is followed here, is based on the latter method and on the Gauss—Chebyshev
numerical integration scheme. The innovative character of the present solution lies in the fact that it
can be applied for the general case of multiple non-intersecting curvilinear cracks where the shape of each
crack may not be reduced to a known equation. Furthermore, it is demonstrated that the proposed solu-
tion converges rapidly to a stable estimation. Hence, it may be used to test the accuracy of a numerical
code (such as FEM, FDM or BEM), as a tool for quick back analysis of in situ fluid flow or pore pressure
measurements, and as a supplement to another numerical code for coupled thermo-hydro-mechanical
problems.
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2. Formulation of the equations for the fractured porous medium
2.1. General equations
By assuming that fluid flow is governed by Darcy’s law, the permeability of the medium does not depend

on the pore pressure and we have reached steady-state flow, then the mass balance leads to the well-known
Laplace’s equation for the pore pressure p(x,y) in the plane Oxy of an isotropic porous medium, i.e.

plx,y)  Oplx,y)
2 _ ) V) _
vp(‘x?y)_ axz + ayz _0 (1)

In this work we assume that all the points on the plane Oxy correspond to the same geodetic height that is
located below the phreatic surface (fully saturated medium). The solution of this field equation may be put
in the following complex form:

0 /0

& (pe)) =0 @)
The general solution of (2) is the following:

p(z) = @(z2) + @(z) = 2Re(P(2)) 3)

where &(z) is an analytic function of the complex variable z with z = x + iy, i = v/—1 is the imaginary unit,
Re(-) denotes the real part of what it encloses and the overbar denotes complex conjugate. Further, the fluid
mass flow or specific discharge vector ¢[L/T]is given by Darcy’s law as follows:'
) .0
q(z) = —igradp(z) = —/ <% + 1%) (4)
where /. denotes the permeability coefficient [L*/(T - F)] of the porous medium.
The boundary conditions of fluid flow encountered in practice are:

(1) Boundary conditions of the first kind, or Dirichlet b.c.’s, when the values of pore pressure are given at
all points of the surface of the body

p=fi(x,y) (5)

(2) Boundary conditions of the second kind, or Neumann b.c.’s, when the values of the normal or tan-
gential component of fluid discharge vector are given at all points of the surface of the body

ARe(gradp) = f>(x,y) (6)

or
Alm(gradp) = f3(x,y) (7)

The method which is applied to the solution of the problem, consists in the formulation of a system of
singular integral equations similar to the method employed in the paper by Barzokas and Exadaktylos,
1995, albeit in a more simplified form. As it is illustrated in Fig. 1, an infinite isotropic plate S containing
k) internal curvilinear cracks L; (i = 1,k;), M thin strip inclusions /; (i = 1,M), N holes y;, (i = I, N), k
point pressure sources (or sinks) of powers ¢; concentrated at the points b; (i = 1,k,) and is under the influ-
ence of a homogeneous fluid flow ¢, is considered.

! The fluid equations and boundary conditions are expressed here in terms of pressure rather than hydraulic head.
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Fig. 1. Infinite isotropic medium containing k; curvilinear cracks, M thin inclusions, N holes and k, point sources (or sinks) subjected
to a homogeneous fluid flow ¢...

Depending on the nature of fluid flow conditions along the boundaries /;, L; and y,, we formulate the
following boundary conditions:

pito) = f7(t0) =pos i=T,m (8)
ap. - 4 , 0Py .

=) =0 (t)—A5—, i=m+Lk+M+N 9)
ato ! 6t0

wherein 7, is the complex coordinate of a point on the contours y,, /; or L;, n; is the number of boundaries on
which Dirichlet boundary conditions are applied, Q, is fluid flow vector in complex form and pq is the pres-
sure induced by the point sources (or sinks) and the homogeneous fluid flow ¢... Also, the plus of minus
signs appearing as superscripts denote the limiting values of the respective functions as the boundary is ap-
proached from “+’ or ‘-’ side, respectively.

The pressure potential @(z) [p(x,y) = 2Red(z)] of the steady-state fluid flow field p(x, y) may then be ex-
pressed as follows:

ko

9 __—ip ~ 4
@(z) = —=ze B _ — ll’l(Z — b,) + dj*(z) (10)
2 — 2nA

where f3 is the angle of the homogeneous fluid flow ¢,, with the Ox axis and ®*(z) is given as
(&N [ ppdt N [ ppdt S [ yde
d,(z) =— —— —=— - 11
2 27‘((121:/L,-t—z+lzl: It't_Z+; =z (1)

with ¢y;, ¢, ¢3; being the real densities along the cracks, thin strip inclusions and holes, respectively.
Substituting in (8) and (9) the limiting values of the fluid flow potential given by (10), the following sys-
tem of integral equations is obtained:
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P (1) dt S ¢ui(r) dt - hyi(1) dt 3 bs(1) de
Re /m t—to Z tl—t() + ; ;—[0 + Z ;—to

i=1 L li i=1 Vi

i#c if m=1 i#c if m=2 i#c if m=3
ka
:fZC(IO) _Re<qxfoeiﬁ+; %ln(fo _bi)> ) Echlmyc ¢ = lvnl m= 1721 or 3 (12)
where
Jae(to) = 1. (t0) + 1 (10) (13)

and L], =L., L. =1, L;, =7,

Mol [ S [ 0d 000

L, (t—to) i—1 =1 L (t— fo i—1 (t— 10)
i#c if m=1 i#c if m=2 i#c if m=3
= 0,.(to) + /Re qe"’+z 1 to €L, 1y, c=m+ 1Lk +M+N
2¢ 00 7'5/1 to — cyter re )
m=1,2, or3 (14)
where
0s(t0) = O (to) + O (to) (15)

It should be noted that the above Cauchy integrals referring to the thin strip inclusions do not possess poles
at the tips in contrast to those referring to the cracks.

In this first attempt to solve the above problem we are concerned in the next paragraphs only with
cracks, thus discarding the presence of thin inclusions and holes. Also, for brevity of presentation we dis-
card uniform fluid flow at infinity and the influence of point sources.

2.2. Solution for a single crack

A single crack lying on the horizontal plane Oxy is first considered. Let us, also, suppose that the crack is
subjected to either a known pore pressure or to a known fluid flow.

The unknown complex potential function @(z) of the steady-state pore pressure field can be expressed by
a Cauchy integral along the boundary of the crack L as follows:

P de

() = 21r r—z (16)

where ¢ € L and qS(t) is the unknown density which is considered to be a real function. It is clear from (16)
that the function @(z) is holomorphic in the entire region excluding L and that for large |z|

B(2) = o(%) (17)

(since the crack has a finite length). By assuming that z does not lie on L we can write (16) in the form

¢()

B(z) = Ux,y) +iV(x,y) = 2n f—z

(18)
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Moreover, if we take under consideration that

t—z=re (19)
where r = |t — z|and 0 = 0(z, 1) = arg(¢ — z), then by taking logarithmic derivatives of (19) we get
ti =dlogr+id6 (20)
—Z

Substituting (20) in (18) and then separating the result into real and imaginary part we obtain
&(z) =U(x,y) +1V(x,y) = /qS dlogr+1—/¢ £)do (21)

The real part U(x,y) of @(z) represents a modified potential of a simple layer whereas the imaginary part
V(x,y) represents a potential of a double layer.
By combining Egs. (21) and (3) we derive the equation for the calculation of the pore pressure

p(z) = 2Re(d /¢> )dlogr =~ /qs ) dr (22)

The physical meaning of Eq. (22) is that the pore pressure at every point z of the plane depends only on its
inverse distance from every point ¢ on L multiplied by the appropriate weight, which is represented by the
density function ¢(z) (Fig. 2).

By combining Egs. (4) and (22) we end up with an equation that can be used for the calculation of the
mass fluid flow in both x and y directions on any point z of the plane

:%/L¢(t)cjiadr+ig/L¢(t) Sifz“ dr (23)

where « is the angle subtended by the vector 7z and the positive direction of the Ox axis.

2.3. Solution for multiple cracks

Since the solution for both boundary value problems referring to either prescribed pore pressure or fluid
flow on a single crack has been derived, the next step is to extend it to a system of non-intersecting cracks.

Let us consider for this purpose that there are k; non-intersecting cracks. Then, on a point z on the plane
Oxy that does not belong to L, (where i =1,2,...,k;) the pore pressure will be the result of the effect of all
the cracks as follows:

Fig. 2. Single internal curvilinear crack in an infinite plate. Contribution of each point ¢ of L on the pore pressure to the point z of the
plane.
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=3 [0 9

where ¢(¢), r; are the density and the magnitude |z — z|of the ith crack respectively.
Working similarly as above, we derive the solution for the fluid flow

k k .
L) CoS o; = A sin o;
0@ =37 [0 areiy [ g0 ar (25)

where «; is the angle between the vector 7z of the ith crack and the positive direction of the Ox axis.

3. Numerical solution

In order to calculate the pore pressure and the fluid flow fields, one has to manage to define the unknown
densities ¢ () such as to satisfy the boundary conditions along the cracks. This problem is well known as
the inversion problem of the Cauchy integrals for arcs (Muskhelishvili, 1953). Although for simple cases it
is possible to invert the Cauchy integral in closed form, in general it cannot be calculated easily. Herein we
propose a numerical method that can be used for the calculation of the unknown densities and can be used
even for the most complicated cases such as the system of non-intersecting curvilinear cracks of arbitrary
shape. The proposed methodology will be presented in a hierarchical fashion beginning with the simplest
cases and proceeding with more complicated ones.

3.1. Simple linear crack

3.1.1. Dirichlet boundary conditions

Let us consider a linear crack (Fig. 3). It is assumed that by some mechanism the pore pressure inside the
crack attains a certain distribution instantly and this pore pressure remains constant through time. At suf-
ficient large time for steady-state pore pressure diffusion to be reached, then according to (22) for a point ¢,
that belongs to the crack L, the following equation holds true:

plio) = & / D (26)

n |t — 1]

in which p(7y) denotes the Dirichlet boundary condition at point 7y on L. The integral Eq. (26) is singular
since for ¢ = ¢y the quantity 1/|¢ — #,|is infinite. In order to calculate the unknown density ¢(7) the Gauss—

Fig. 3. A single straight crack and system of coordinates.
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Chebyshev numerical integration method for singular integral equations will be employed (Erdogan and
Gupta, 1972). This method displays high accuracy along the crack but it does not give estimates at the lim-
its of the integration interval.

The endpoints a, b of the crack are points of geometric singularity. Physical arguments provide sufficient
information about the behavior of the unknown density function ¢(z). Invariably, these arguments simply
account to stating that if the unknown function is a potential (i.e. temperature, pore pressure, displacement
etc.) it has to be bounded at the singular points a, b. It can be shown that the fundamental function of (26)
which characterizes the behavior of ¢(¢) at the singular points a and b is given by (Muskhelishvili, 1953;
Erdogan, 1969):

w(t) =/(t—a)(b—1) (27)

since ¢(¢) is bounded at these points. By applying numerical integration in (26) and taking under consid-
eration (27) there results the following system of linear algebraic equations:

|t — to]

%/ Vi—ab—- 2 dt:p(to)@%iw- P by (28)

where we have set ¢(¢) = w(t)p(¢), ¢(¢) is the new unknown function that is bounded in the closed interval
[a,b] and satisfies the Holder condition in order to ensure existence of the principal value of the Cauchy
integral in (28), n is the number of integration points and r is the number of collocation points. The weight
functions w; are given by

ML jn
R R <n+1> (29)

The integration points #; and collocation points ty, referring to the interval [, b] may be found by the linear
transformation of the integration and collocation points &;, #,, respectively, referring to the interval [—1,1]
as follows:

b—a b+a
t‘/:Téj+T (30)
b—a b+a
= — 31
to 5 n, + 5 (31)

According to Erdogan and Gupta (1972) the integration points ; are the roots of the Chebyshev polyno-
mials of the second kind and of order n

fj:cos(nj—fl>, j=12,...,n (32)

while the collocation points 7, are the roots of the Chebyshev polynomials of the first kind and of order
(n+1)

n(2r — 1)
1, cos(z(n+1)>, r J2,...,n+ (33)

Eq. (28) represents a linear system of (n + 1) algebraic equations with » unknowns, i.e. the densities q?)(t,—),
j=1,2,...,n. Hence, the system is over-determined but in practice one can choose 7 to be an even integer
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and ignore the equation that corresponds to » =5+ 1 (Erdogan and Gupta, 1972). After the solution of
(28), the pore pressure in the entire plane domain can be found as follows:

J=1

where z is an arbitrary point on the plane. The equation for the calculation of the fluid flow is derived for
the Neumann boundary condition case that follows.

3.1.2. Neumann boundary conditions

Following a similar path, let us assume now that by some mechanism the fluid flow inside the crack at-
tains a certain distribution instantly and this flow remains constant through time. In order to formulate the
linear system of algebraic equations for the calculation of the unknown density, Eq. (23) is modified into a
more convenient form. In fact, we will derive a similar form to (23) for a local coordinate system (sg, 729) that
corresponds to a point # that belongs to the crack, where sy, 1o are the tangent and the normal at ¢, respec-
tively (Fig. 4). Then, by recalculating the gradient of the pore pressure (see (4)) in terms of the local coor-
dinate system at ¢y we derive the modified form of (23)

i) = a0) +ig, ) == [ 90 HE 412 [ g TN o, (39)
T J r T J r
where ¢,(t9), ¢,(to) are the tangential and the normal flow respectively and o(z, 7o) is the angle enclosed by
the vector t,7, and the positive tangent T, at the point ¢, (Fig. 4). The real part of Eq. (35) can be defined
and calculated and it does not depend if point ¢y is approached from the upper (+) or the lower (—) side.
However, the calculation of the imaginary part is altered if it is approached from the upper or the lower side
(since the fluid flow that is perpendicular to the crack has opposite directions as we approach from the
upper or the lower side). Hui and Mukherjee (1997) have proved that its value is not equal to zero and
the density function can be calculated by virtue of an extended Plemelj formulae for hypersingular integrals.
However, the latter gives the unknown density on #, hence interpolation is required in order to define the
density on # for the full field domain solution. This means additional error due to numerical interpolation,
as well as more complicated formulae.

As it is clear from (39), it suffices to prescribe only the one of the two flow vector components on the
boundary in order to calculate the unknown density ¢(¢). Due to this fact and by taking under consider-
ation the aforementioned analysis for the imaginary part of (35), we will employ here only the tangential
fluid flow for the calculation of the unknown density.

Fig. 4. Internal curvilinear crack in an infinite plate and local system of coordinates.
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The tangential fluid flow ¢(ty) on a point ¢y of L is given by

/¢ cosoc (, to) dr (36)
By applymg to (36) the numerical integration scheme given by (28) we get
d) ) cos a2}, to,
‘ Z peosalintw) _ (37)
t — tor |

where the weights w; as well as the integration #; and collocation ¢, points are calculated in a similar fashion
to the Dirichlet case. In order the linear system of Eq. (37) to be soluble or at least the solution to produce
flows that have physical meaning, one additional condition must be fulfilled. This condition is called the
Condition of Solubility and prescribes that the integral of the tangential flow with respect to s, must be al-
ways null

[ awasn =03 aw) =0 (38)

This condition refers only to the profile of the tangential flow (Neumann b.c.) that is applied to the bound-
ary and it is not part of the system of linear equations. However, it is necessary and suffice condition for the
solubility of (38) (Muskhelishvili, 1953).

After the solution of (37), the fluid flow in both x and y directions at any point z of the plane can be
calculated by applying a similar numerical integration to (23)

40) = 0.0) +ig (&) = 2 3w, VU] 7 Z iU S‘““l”) (39)

=1 lt — =

Note that now o is the angle enclosed by the vector iz and the positive direction of the Ox axis.
3.2. Smooth curvilinear crack

The methods of numerical integration of Gauss—Chebyshev that were presented in the previous para-
graph are not applicable for smooth curvilinear cracks of arbitrary shape. It shall be noted that in special
cases where the crack L can be described by a known equation z = z(s), where s is a real variable varying
along L, then by modifying transformations (30) and (31) the problem may be easily reduced into a system
of linear algebraic equations. However, in order to consider the general case of arbitrary crack shape, a
methodology was developed here for the computation of the integration and the collocation points. This
is based on the approximation of the crack by an adequate number of linear segments. The algorithm that
is used for the computation of the coordinates of the integration and collocation points for both types of
boundary conditions is the same, hence for the sake of brevity the methodology for the computation of
coordinates of #; is presented here. Also, it must be noted that this method can be used for higher order
approximations of the crack shape (e.g. splines), but in order to preserve the simplicity of exposition of
the theory we present here only the linear approximation.

The basic idea of the methodology has as follows: in a first step, the coordinates of the integration points
¢; that correspond to the interval [—1,1] are transformed into a linear interval with a length equal to the
total length of the curvilinear crack. At the same time the distances between the consecutive points on this
new linear interval are calculated. Then, starting from the one crack tip (say tip «), the integration points
are placed consecutively one-by-one along the curvilinar crack by measuring each time its known distance
from the previous point.

Let us assume that K linear segments approximate a curvilinear crack (Fig. 5). All these linear segments
have a total of (K+ 1) endpoints whereas the total length of the crack is the sum of their lengths
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Fig. 5. Curvilinear crack discretized by K linear segments.

D=3/ 0 =3 + (o1 —a)? (40)

in which D is the total length and xp, yy are the coordinates of the Nth endpoint.

Let us now set the origin of a new coordinate system to the one limit of the linear interval [—1, 1], for
example the right limit (+1). One can compute the percentage of the total length of the linear interval
[—1,1] in which every integration point jperc) lies as follows:

-5
éj(perc) = 7 A/a J = 1,2,...,}’1 (41)

where ¢; are computed by virtue of Eq. (32). By setting the origin of another local coordinate system to the
one tip of the curvilinear crack (for example the end «), it is possible to compute the distances (measuring
from the tip @) on the crack L on which the points ¢, must be placed, by multiplying the total distance D of
the crack with the percentages &;perc)

tj(dist) = 6j(perc)D7 ] = 17 27 EERERC (42)
Subsequently, the distance between two consecutive integration points can be calculated by the following
equation:

t1(di if j=1,
A,j:{ 1(dist) v i=1,2,....n (43)
tigisy) — ti—iisty i j > 1,

Also, the vector of the cumulative lengths of the linear segments, which approximate the curvilinear crack,
has the following form:

D(cum) =

K
Dy,Dy+Dy,..., Y Dy (44)
N=1

where Dy is the length of the Nth linear segment.

Since there are n points #; the algorithm must be repeated » times. Also, a new variable, called Distance
Meter (DM) that is a distance and is defined below, should be computed in each loop that will be used later
for correcting the placement of each integration point along the crack. Its initial value is set equal to zero.
Moreover, one has to set an initial base point which in this case will be the end a of the crack L (it must be
the same with the origin of the local coordinate system which was used for Eq. (42)) with coordinates x,, y,.
Finally, we define as D y(cum) as the Nth entry in the vector of the cumulative lengths D cum) and we set the
initial value of N equal to 1. The initial conditions have as follows:
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DM =0
Xbase = Xa
(45)
Ybase = Va
N=1

The algorithm has as follows:
If the sum of the DM with the current A¢; is smaller than the current D ycum), then the following steps are
followed:

(1) The current ¢; is calculated from the formula
tj = A + (Souse + Vi) (46)

in which o is the angle subtended between the Ox axis and the current Nth linear segment of the curve
measured in the positive direction (Fig. 6(a)).

(2) The new DM is the sum of the previous value of DM and the current value of Az,

(3) The new base point is the current value of #;.

Then, we return back to the start of the algorithm for the next loop. Fig. 6(a) illustrates graphically the
procedure described for this case.

currently
calculated t;

Xpase™ Yase
(previoust;)

currently S

caculatedt; -

’

>(base+iyba{Se
(previoust;)

Fig. 6. Calculation of the integration points along a crack of arbitrary shape. (a) First case: The integration point that is currently
calculated must be placed on the current linear segment. (b) Second case: The integration point that is currently calculated must be
placed on the next linear segment.
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On the other hand, if the sum of the DM with the current At; is greater or equal to the current D y(cum)
then the following steps are followed:

(1) A new variable which we call Remaining (R) is computed as follows:

R =DM + Alj — Dy (cum) (47)
(2) We increase the value of N by 1
N=N+1 (48)

(3) The new base point will be

Xpase = XN

Ybase = VN

(49)

where xy, yy indicate the coordinates of the Nth endpoint of the linear segments of the curve L.
(4) If R is smaller than the length of the current length of the Nth linear segment of the curve then the
current ¢; is set equal to the following expression:

tj = Reim + (xbase + iybase) (50)

where o is the angle between the Ox axis and the current linear segment of the curve (Fig. 6(b)).Else, if
R is greater or equal to the current length of the Nth linear segment of the curve then a new R is cal-
culated as follows:

R=R =/ (1 — o)+ (i —xx)’ (51)

and we go back again to step (48) of the 2nd case. This step ensures that we follow the curve in all
possible cases.

(5) The new DM will be the sum of the old DM with the current A,

(6) The new base point is the current computed value of ¢;.

Finally we return back to the start of the algorithm for the next loop. Fig. 6(b) illustrates graphically the
procedure described for this case.

The above algorithm is executed for n loops until all the points #; are computed. After all the integration
and collocation points have been found, the pore pressure or the fluid flow can be computed in the manner
that was presented in the previous paragraphs.

3.3. System of smooth non-intersecting curvilinear cracks

Let us assume a multiply fractured domain with k; non-intersecting cracks. Also, let us assume that the
first n; cracks are under Dirichlet boundary conditions and the remaining (k; — n;) cracks are under Neu-
mann boundary conditions.

By combining the integral Eqs. (24) and (26) we derive the integral equation for a point ¢, that belongs to
a crack on which Dirichlet boundary condition is applied

L[ ¢.(0) 1 ¢ / (1)
to) =— | —L—dr+-— D dr, ¢c=1,2,...,n 59
p( ’ ) T /L(. |t - tOcl /1 1:21 L; |t - foc| 1 ( )

i#c

where p(f.) is the Dirichlet boundary condition at the point #; of the cth crack. Eq. (52) in conjunction with
(28) leads to the linear system of algebraic equations that refers to the Dirichlet boundary conditions



P.A. Liolios, G.E. Exadaktylos | International Journal of Solids and Structures 43 (2006) 3960-3982 3973

_Z ,| Zzn: =pltoe), c=1,2,...,m (53)

- tO)c - tOrc
17&0

in which we have used for the sake of simplicity the same number of integration and collocation points for
each crack. Eq. (53) consists a linear system of (n; X n) equations with (k| X n) unknowns. The remaining
((k; — ny) X n) equations that are necessary for the solution of the system will be derived by the Neumann
boundary conditions.

By combining Egs. (25) and (36) we derive the integral equation for a point 7, that belongs to a crack on
which Neumann boundary condition is applied

(¢, toc) A (¢, toc
/ ('Z) ) cosalt, o /¢ cos O)dr, c=m+1L,nm+2,... .k (54)
Le t - tOL L; t - tOc
l#c
where ¢,(#,.) is the tangential flow at the point 7, of the cth crack. Eq. (54) in conjunction with (37) leads to
the linear system of algebraic equations that refers to the Neumann boundary conditions

Z cos o, 1 - cos ot t
A (]5 /c jes Orc 2 : z : Il (/17 Orc) _ qS(IOm)v c=n + l,nl —+ 27 . ,kl
|t l(),c| ZL()rcl
lyéL

(55)

Egs. (53) and (55) consist a linear system of (k; x ) equations with (k; X n) unknowns (i.e. the unknown
densities ¢,(¢)).

After the computation of the crack densities the pore pressure and the fluid flow at any point z of the
plane can be calculated by virtue of equations

P& =2 30> w, Pl (56)
and

‘1(2):%@)“’1»:22iwfwﬁgzzwfw (57)

|t —Z|

respectively.

4. Numerical examples

Before proceeding to the presentation of numerical examples, it is necessary to check the convergence of
the proposed numerical solution. Since we are not aware of any closed-form solution for this problem it is
not possible to validate the accuracy of the proposed solution. In order to study the convergence of the
solution we consider a straight crack that is placed along Ox axis and with the origin of the coordinate sys-
tem placed at its center. The crack occupies the interval [—1, 1] and is subjected to uniform unit pore pres-
sure. It is also assumed that the permeability coefficient of the medium is equal to 1. Fig. 7 displays the pore
pressure p distribution along Ox axis for 4, 8, 12, 16, 20 and 24 integration points, respectively. Also, Fig. 8
presents the absolute relative error (the percentage of the absolute difference) between one calculation
and its previous one with fewer integration points. It can be observed that the difference in the calculated



3974 P.A. Liolios, G.E. Exadaktylos | International Journal of Solids and Structures 43 (2006) 3960-3982

14 T
X 4 points
A 8 points
O 12 points
1.2+ o 16 po!nts |
* 20 points
—— 24 points
1 =
L 08
>
0
1%
<
o
L 06
S
a
0.4
0.2
0
0
Ox axis
Fig. 7. Pore pressure distribution along Ox axis.
20 T T T T
A 4to 8 points
A A ANNANA .
AL AAAAAAAAAAAAﬁo81012p0|r'!tsA
O 12 to 16 points
18 g\ * 16 to 20 points []
—— 20 to 24 points

16 A 1
14 E
O o

AO ©O000C00D000D00000D0DO0O0O0O0O0O0O OO
10f .

sk -
DDDDDDDDDDDDDDDDDDDDDDDDDDDCD

% absolute relative error of pore pressure

6L -
Kok ok %k % K X Kk K X K K KX %X K Kk K K Kk X K K * ¥ % % ¥ % * F

4 Il Il Il Il Il Il Il 1 Il
1 1.2 1.4 1.6 1.8 2 22 2.4 2.6 2.8 3
Ox axis

Fig. 8. Absolute relative error of the pore pressure calculation along Ox axis.

solution between 20 and 24 integration points is less than 5%, hence it is assumed that the solution con-
verges above 20 integration points. Also, it should be preferred not to choose too many integrations points
because the solution is sensitive to the round-off error. Figs. 9 and 10 display the fluid flow discharge along
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the Ox axis ¢, and its relative error calculated as before. Moreover, Figs. 11-14 display the pore pressure p,
the fluid flow ¢, and their relative errors along Oy axis, respectively. The fluid flow g, along Ox axis as well
as ¢, along Oy axis are not displayed since the result is practically equal to zero (values of order O(10~'%) as
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Fig. 12. Absolute relative error of the pore pressure calculation along Oy axis.

it was expected due to symmetry. Also, as it may be observed from (35), it is impossible to calculate the fluid
flow g, (g, = g, in this case) on the crack. This is the reason for the high discrepancy of the fluid flow ¢,



P.A. Liolios, G.E. Exadaktylos | International Journal of Solids and Structures 43 (2006) 3960-3982 3977

35 T T T T T

4 points
8 points
12 points
3l 16 points ||
20 points
—— 24 points

¥ OO0 D> x

25

N

fluid flow g,

s
&

0.5

0 0.5 1 15 2 25 3
Oy axis

Fig. 13. Distribution of the component g, of the fluid discharge vector along Oy axis.

160 T
A A 4to 8 points
O 810 12 points
O 12 to 16 points
1401 * 16 to 20 points []
—— 20 to 24 points

[N

N

o
T
i

e

o

o
T
i

% absolute relative error of fluid flow g,

80 4
o A

60 —

400 4
* A

20+ AN N ANAND

o AAAAAAAAAAAAAAAAA
OO0 O0OO0OO0O0OO0OO0OO0OO0OO0OO0O0OO0OO0OO0OO0OOo

\/@%ﬁﬁﬁ8853;;;;;;;;9;;&;;@;;;;
0 I I I I I

0 0.5 1 15 2 25 3

Oy axis

Fig. 14. Absolute relative error of the component g, of the fluid discharge vector along Oy axis.

along Oy axis that is observed when the calculation point approaches zero (the origin of the coordinate
system).
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In order to illustrate the capabilities of the method we present two arbitrary examples of multiply frac-
tured domains. In the first example we have considered three curvilinear cracks with Dirichlet boundary
condition (i.e. fixed pore pressure distribution) applied on them. Figs. 15-17 display the pore pressure
p(z) and the fluid flow vector components along Ox (¢.(z)) and Oy (g,(z)) directions, respectively. In this
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Fig. 15. Pore pressure distribution (p(z)) in the plane.
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Fig. 16. Distribution of the fluid discharge component ¢,(z) in the plane.
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Fig. 18. Pore pressure distribution (p(z)) in the plane.
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case, we have used 30 integration points per crack, a permeability coefficient A =1 and the following

boundary conditions:
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(1) The crack located in the center is subjected under pressure given by p(s) =2 — ;12 (s — 1/2)* (where s is
a real variable that runs along the length of the crack and has as origin one of its tips and / is the
length of the crack).

(2) The crack located in the upper left corner is under uniform pressure given by p(s) = 1.
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(3) The other crack located in the lower right corner is subjected under constant pressure p(s) =0
(cavitation).

On the second example, (Figs. 18-20) we consider two cracks in which the first one is under constant
tangential fluid flow while there is a cavitation on the second one. Again, we have used n =30, A =1
and the following boundary conditions:

(1) Tangential fluid flow ¢,(s) = 1% (s —1/2)" is applied to the upper left crack. Note that this boundary
condition satisfies the Condition of Solubility (Eq. (38)).

(2) The other crack located in the lower right corner is subjected to constant null pressure p(s) =0
(cavitation).

Note that some instabilities that might arise near and/or on the cracks are due to the location of the
points of the grid that we use. When a point is near an integration point, then its value tends to become
singular. The only points very close to the integration points that the solution can be calculated are the col-
location points. However, this phenomenon does not affect the behavior or the accuracy of the solution.

5. Concluding remarks

In a first step, the complete system of equations that depict the problem of steady-state flow in an iso-
tropic porous medium containing an arbitrary system of cracks, thin strip inclusions, holes and point
sources (or sinks) is presented. Next, a semi-analytical solution for steady-state fluid flow in multiply frac-
tured isotropic media is, also, illustrated. The distribution of the pore pressure and the fluid flow on the
fractured plane can be derived from either Dirichlet or Neumann boundary conditions specified along
the crack surfaces. The numerical integration scheme of the derived solution converges rapidly to the solu-
tion and is easily implemented into a PC. Although the considered model is characterized by many simpli-
fications (i.e. steady-state conditions, linearity, isotropy), it can find many useful applications in current
engineering practice. For example, it may be used to test the accuracy of a numerical code (such as
FEM, FDM or BEM), as a tool for quick back analysis of in situ fluid flow or pore pressure measurements,
as a supplement to another numerical code for coupled thermo-hydro-mechanical problems etc.

The extension of the numerical algorithm in order to attack the problem of interaction between holes,
cracks and thin strip inclusions is a straightforward task. Also, the generalization of the proposed theory
to anisotropic porous media is a formidable task and will be presented in a future publication.
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